
Decentralized	Public	Key	Infrastructure	
A	White	Paper	from	Rebooting	the	Web	of	Trust	

by	(alphabetical	by	last	name)	Christopher	Allen,	Arthur	Brock,	Vitalik	Buterin,	Jon	
Callas,	Duke	Dorje,	Christian	Lundkvist,	Pavel	Kravchenko,	Jude	Nelson,	Drummond	

Reed,	Markus	Sabadello,	Greg	Slepak,	Noah	Thorp,	and	Harlan	T	Wood	

	

	

Abstract	

Today’s	Internet	places	control	of	online	identities	into	the	hands	of	third-parties.	
Email	addresses,	usernames,	and	website	domains	are	borrowed	or	"rented"	
through	DNS,	X.509,	and	social	networks.	This	results	in	severe	usability	and	
security	challenges	Internet-wide.	This	paper	describes	a	possible	alternate	
approach	called	decentralized	public	key	infrastructure	(DPKI),	which	returns	control	
of	online	identities	to	the	entities	they	belong	to.	By	doing	so,	DPKI	addresses	many	
usability	and	security	challenges	that	plague	traditional	public	key	infrastructure	
(PKI).	DPKI	has	advantages	at	each	stage	of	the	PKI	life	cycle.	It	makes	
permissionless	bootstrapping	of	online	identities	possible	and	provides	for	the	
simple	creation	of	stronger	SSL	certificates.	In	usage,	it	can	help	“Johnny”	to	finally	
encrypt	thanks	to	its	relegation	of	public	key	management	to	secure	decentralized	
datastores.	Finally,	it	includes	mechanisms	to	recover	lost	or	compromised	
identifiers.	

DPKI v1.0.0, 12/23/15 Page 2 	

1.	Introduction	—	Why	DPKI	

Section	Contributors	Alphabetical	By	Last	Name:	Christopher	Allen,	Christian	
Lundkvist,	Jude	Nelson,	Drummond	Reed,	Markus	Sabadello,	and	Greg	Slepak	

The	Internet	facilitates	communications	and	transactions	between	individuals	
worldwide.	This	is	conducted	through	the	use	of	identifiers	such	as	email	addresses,	
domains,	and	usernames.	But	who	controls	these	identifiers?	How	are	they	
managed?	And	how	is	secure	communication	facilitated	between	them?	

In	the	modern	day,	third-parties	such	as	DNS	registrars,	ICANN,	X.509	Certificate	
Authorities	(CAs),	and	social	media	companies	are	responsible	for	the	creation	and	
management	of	online	identifiers	and	the	secure	communication	between	them.	
Unfortunately,	this	design	has	demonstrated	serious	usability	and	security	
shortcomings.	

1.1	The	Control	&	Management	of	Online	Identifiers	

When	DNS	and	X.509	PKIX	were	designed,	the	Internet	did	not	have	a	way	to	agree	
upon	the	state	of	a	registry	(or	database)	in	a	reliable	and	decentralized	manner.	
Therefore,	these	systems	designated	trusted	third-parties	to	manage	identifiers	and	
public	keys.	Virtually	all	Internet	software	now	relies	on	these	authorities.	Because	
of	this,	website	domains	do	not	really	belong	to	the	organizations	that	register	them	
(NOTE:	Instead,	they	belong	to	third	parties	like	ICANN,	domain	registrars,	
Certificate	Authorities,	and	anyone	capable	of	influencing,	coercing,	or	hacking	into	
them.)	and,	similarly,	usernames	on	websites	do	not	really	belong	to	those	users.	

These	trusted	third-parties	(sometimes	abbreviated	TTP),	act	as	corruptible	central	
points	of	failure,	each	capable	of	compromising	the	integrity	and	security	of	the	
entire	Internet.	Because	control	of	these	identifiers	is	given	to	TTPs,	the	usability	of	
those	identifiers	is	also	compromised.	These	issues	with	corruptibility	and	usability	
cause	additional	problems:	

• Some	companies	spend	significant	resources	fighting	security	breaches	caused	
by	misbehaving	CAs;	

• Many	websites	still	do	not	support	HTTPS;	

• Truly	secure	and	user	friendly	communication	still	remains	out	of	reach	of	for	
most	netizens.	[ref:	"Why	Johnny	Can’t	Encrypt"	
http://arxiv.org/abs/1510.08555]	

For	all	these	reasons,	the	foundational	precept	of	DPKI	is	that	identities	belong	to	the	
entities	they	represent.	That	requires	designing	a	decentralized	infrastructure	where	
every	identity	is	controlled	not	by	a	trusted	third-party,	but	by	its	principal	owner.	

DPKI v1.0.0, 12/23/15 Page 3 	

1.2	The	Security	of	Online	Communication	

Online	communications	are	secured	through	the	safe	delivery	of	public	keys.	These	
keys	correspond	to	identities.	The	entity	these	identities	represent,	called	the	
principal,	uses	a	corresponding	secret	private	key	to	both	decrypt	messages	sent	to	
them,	and	to	prove	they	sent	a	message	(by	signing	it	with	the	private	key).	

PKI	systems	are	responsible	for	the	secure	delivery	of	public	keys.	However,	the	
commonly	used	X.509	PKI,	PKIX,	undermines	both	the	creation	and	the	secure	
delivery	of	these	keys.	

1.2.1	The	Challenges	of	Third	Parties:	Finding	"The	Right	Key"	

In	X.509	PKIX,	web	services	are	secured	through	the	creation	of	the	keys	signed	by	
CAs.	However,	the	complexity	of	generating	and	managing	keys	and	certificates	in	
PKIX	has	caused	web	hosting	companies	to	manage	the	creation	and	signing	of	these	
keys	themselves,	rather	than	leaving	it	to	their	clients.	This	creates	major	security	
concerns	from	the	outset,	as	it	results	in	the	accumulation	of	private	keys	at	a	
central	point	of	failure	(the	web	hosting	company),	making	it	possible	for	anyone	
with	access	to	that	repository	of	keys	to	compromise	the	security	of	the	connections	
to	those	websites	in	a	way	that	is	virtually	undetectable.	

The	design	of	X.509	PKIX	also	permits	any	of	~1200	CAs	around	the	world	to	
impersonate	any	website.	This	is	further	complicated	by	the	risk	of	coercion	or	
compromise	of	a	CA.	Because	of	these	dangers,	users	cannot	be	certain	that	their	
communications	are	not	being	compromised	by	a	fraudulent	certificate	allowing	a	
MITM	(Man-in-the-Middle)	attack.	These	attacks	are	extremely	difficult	to	detect;	
companies	like	Google	that	produce	web	browsers	can	sometimes	recognize	attacks	
on	their	own	websites,	but	they	cannot	prevent	attacks	on	arbitrary	websites.	

DPKI v1.0.0, 12/23/15 Page 4 	

Workarounds	have	been	proposed.	HPKP	is	an	IETF	standard	that	lets	websites	tell	
visitors	to	"pin"	the	public	key	they	receive	for	a	period	of	time	(ignoring	any	other	
key).	However,	such	mechanisms	are	difficult	for	website	administrators	to	use	and	
therefore	might	not	be	used	much	in	practice.	HPKP	is	vulnerable	to	“Hostile	
Pinning”,	and	in	cases	where	the	pin	is	legitimate	it	comes	with	a	risk	of	breaking	
websites	if	key(s)	need	to	be	legitimately	replaced.	Worse	still,	some	
implementations	of	HPKP	make	it	trivial	for	a	third-party	to	override	arbitrary	pins	
without	user	consent.	

1.3	The	Usability	of	PKI	

Even	if	third-party	authorities	could	be	trusted,	the	current	PKI	system	has	major	
usability	problems.	A	group	from	Brigham	Young	University	investigated	the	
usability	of	Mailvelope,	a	browser	extension	that	supports	GPG-encrypted	
communication	through	third-party	websites	like	Gmail.	Their	research	
demonstrated	a	90%	failure	rate	in	secure	communication	attempts	among	the	
participants.	Public	key	management,	the	study	found,	was	the	main	reason	that	
users	were	unable	to	use	the	software	correctly.	

Even	TextSecure/Signal	—	a	secure	messaging	system	endorsed	by	Edward	
Snowden	for	its	security	and	ease	of	use	—	has	usability	problems	due	to	its	
inability	to	smoothly	handle	public	key	changes.	If	a	user	deletes	and	reinstalls	the	
app,	their	friends	are	warned	that	their	public	key	"fingerprint"	has	changed.	This	
scenario	is	indistinguishable	from	a	MITM	attack,	and	few	users	are	likely	to	
understand	or	bother	verifying	that	they	received	the	correct	public	key.	

1.3.1	The	Danger	of	Message	Compromise	

As	a	result	of	conventional	PKI’s	usability	challenges,	much	of	Web	traffic	today	is	
unsigned	and	unencrypted.	This	is	particularly	evident	on	the	major	social	
networks.	Because	of	PKI’s	complexity,	social	networks	do	not	encrypt	their	user’s	
communications	in	any	way,	other	than	relying	on	PKIX	by	sending	them	over	
HTTPS.	Because	messages	are	not	signed,	there	is	no	way	to	be	sure	that	a	user	
really	said	what	they	said,	or	whether	the	text	displayed	is	the	result	of	a	database	
compromise.	Similarly,	user	communication	is	stored	in	a	manner	that	anyone	with	
access	to	those	databases	can	read	—	compromising	user	privacy	and	burdening	
social	networks	with	large	liability	risks.	

DPKI v1.0.0, 12/23/15 Page 5 	

2.	DPKI’s	Answer	To	The	Web’s	Trust	Problems	

Section	Contributors	Alphabetical	By	Last	Name:	Drummond	Reed,	and	Greg	Slepak	

The	answer	is	not	to	abandon	PKI,	but	to	find	an	alternative:	DPKI,	a	future	
specification	for	a	decentralized	public-key	infrastructure.	

The	goal	of	DPKI	is	to	ensure	that,	unlike	PKIX,	no	single	third-party	can	
compromise	the	integrity	and	security	of	the	system	as	as	whole.	Trust	is	
decentralized	through	the	use	of	technologies	that	make	it	possible	for	
geographically	and	politically	disparate	entities	to	reach	consensus	on	the	state	of	a	
shared	database.	DPKI	focuses	primarily	on	decentralized	key-value	datastores,	
called	blockchains,	but	it	is	perfectly	capable	of	supporting	other	technologies	that	
provide	similar	or	superior	security	properties.	

Third-parties,	who	are	called	miners	(or	validators),	still	exist,	but	their	role	is	
limited	to	ensuring	the	security	and	integrity	of	the	blockchain	(or	decentralized	
ledger).	These	third-parties	are	financially	incentivized	by	a	consensus	protocol	to	
follow	the	rules	of	the	protocol.	Deviation	from	the	protocol	results	in	financial	
punishment,	while	consistency	with	the	protocol	typically	results	in	financial	
reward.	Bitcoin,	devised	by	Satoshi	Nakamoto,	is	the	first	such	successful	protocol.	It	
is	based	on	proof-of-work,	in	which	the	energy	expenditure	of	"miners"	is	used	to	
secure	the	database.	

A	principal	can	be	given	direct	control	and	ownership	of	a	globally	readable	
identifier	like	a	website	domain	by	registering	the	identifier	in	a	blockchain,	just	like	
any	other	type	of	transaction.	Within	the	key-value	datastore	(NOTE:	In	this	case	
"key"	refers	to	a	database	lookup	string,	not	a	public	or	private	key.),	the	principal	
uses	the	identifier	as	the	lookup	key.	

Simultaneously,	blockchains	allow	for	the	assignment	of	arbitrary	data	such	as	
public	keys	to	these	identifiers	and	permit	those	values	to	be	globally	readable	in	a	
secure	manner	that	is	not	vulnerable	to	the	MITM	attacks	that	are	possible	in	PKIX.	
This	is	done	by	linking	an	identifier’s	lookup	value	to	the	latest	and	most	correct	
public	keys	for	that	identifier.	

In	this	design,	control	of	over	the	identifier	is	returned	to	the	principal.	No	longer	is	
it	trivial	for	any	one	entity	to	undermine	the	security	of	the	entire	system	or	to	
compromise	an	identifier	that	is	not	theirs.	This	is	how	DPKI	is	able	to	address	both	
the	security	and	the	usability	problems	that	plague	DNS	and	X.509	PKIX.	

A	complete	description	of	blockchains	and	their	consensus	protocols	is	beyond	the	
scope	of	this	paper.	However,	§5,	"Security	of	Identifiers	and	Public-Keys",	discusses	
some	of	their	security	properties	and	the	Appendix	“Thin	Client	Details”	describes	
how	the	data	in	these	blockchains	can	be	securely	accessed	from	mobile	devices	that	
do	not	themselves	have	a	full	copy	of	the	blockchain.	

DPKI v1.0.0, 12/23/15 Page 6 	

3.	DPKI’s	Threat	Model	

Section	Contributors	Alphabetical	By	Last	Name:	Jude	Nelson	

Like	conventional	PKI	systems,	DPKI	assumes	that	a	persistent	active	adversary	Mal	
constantly	tries	to	trick	one	principal	Alice	into	trusting	the	wrong	key	for	another	
principal	Bob.	This	can	take	the	form	of	discovering	the	wrong	identifier	for	Bob	
(e.g.,	finding	the	wrong	account	at	twitter.com)	or	caching	the	wrong	key	once	the	
identifier	is	known.	

Assume	that	Mal	is	a	computationally-bounded	adversary	who	is	capable	of	
compromising	or	compelling	centralized	trusted	PKI	parties	to	trick	Alice	into	
trusting	the	wrong	key.	This	has	already	been	proven	feasible,	as	in	the	case	of	
DigiNotar	and	in	cases	wherein	state	actors	force	CAs	in	their	jurisdictions	to	sign	
invalid	keys.	In	addition,	assume	that	Mal	is	capable	of	altering	or	blocking	a	bound	
fraction	(less	than	100%)	of	the	messages	exchanged	between	Alice	and	Bob.	This	is	
also	feasible	today,	and	is	evidenced	by	ISP-level	censorship,	by	request	redirection,	
and	by	packet-mangling	attacks,	which	are	executed	in	order	to	disrupt	existing	file-
sharing	technologies	like	BitTorrent,	to	black-hole	packets	from	known	Tor	exit	
nodes,	and	to	block	HTTP	access	to	politically-sensitive	materials.	

In	light	of	Mal’s	powers,	two	design	principles	for	DPKI	become	apparent:	

1. As	has	already	been	suggested,	each	principal	must	be	in	complete	control	of	
their	current	identifier/public-key	binding.	If	only	the	principal	can	make	
changes	to	their	identifier,	then	Mal	is	compelled	to	attack	each	principal	she	
wishes	to	compromise.	This	is	in	contrast	to	traditional	PKI,	where	Mal	only	
needs	to	compromise	one	CA	to	trick	many	principals.	

2. The	system	must	make	all-or-nothing	forward	progress:	either	every	principal	
must	witness	every	other	principal’s	updates	to	their	identifier/public-key	
bindings,	or	else	no	one	may	observe	any	updates.	This	is	required	to	protect	
against	Mal’s	possible	network-level	attacks	by	alerting	the	entire	network	to	
her	presence	if	she	censors	updates	to	certain	principals.	This	makes	targeted	
attacks	against	certain	users	or	key-pairs	extremely	costly,	because	it	ensures	
that	the	only	way	Mal	can	attack	anyone	is	to	attack	everyone	at	once.	

As	already	suggested,	DPKI	achieves	these	design	principles	through	use	of	secure	
decentralized	key-value	datastores	to	host	the	bindings	between	identifiers	and	
public-key	hashes.	See	§5,	"Security	of	Identifiers	and	Public-Keys"	for	details.	

DPKI v1.0.0, 12/23/15 Page 7 	

4.	Registration	and	Identifiers	

Section	Contributors	Alphabetical	By	Last	Name:	Christopher	Allen,	Christian	
Lundkvist,	Jude	Nelson,	Drummond	Reed,	Markus	Sabadello,	Greg	Slepak	

As	described	in	the	previous	sections,	the	core	of	DPKI	are	decentralized	key-value	
datastores	that	can	serve	as	identifier	registries,	allowing	a	principal’s	public	keys	to	
become	securely	associated	with	their	identifier.	As	long	as	this	registration	remains	
valid	and	the	principal	is	able	to	maintain	control	of	their	private	key,	no	third-party	
can	take	ownership	of	that	identifier	without	resorting	to	direct	coercion	of	the	
principal.	

DPKI	does	not	specify	what	types	of	identifiers	should	be	used	and	recognizes	that	
different	approaches	are	possible	(e.g.,	usernames	or	UUIDs),	which	may	differ	in	
terms	of	ease-of-use,	permanence,	uniqueness,	security,	and	other	properties.	

For	DPKI	to	use	a	decentralized	key-value	store	it	must	have	the	following	
properties:	

• Permissionless	Writes.	Any	principal	can	broadcast	a	message	provided	that	
it	is	well-formed.	Other	peers	in	the	system	do	not	require	admission	control.	
This	implies	a	decentralized	consensus	mechanism.	

• Fork	Choice	Rule.	Given	two	histories	of	updates,	any	principal	can	determine	
which	one	is	the	"most	secure"	through	inspection.	

These	needs	can	be	met	through	blockchains	such	as	Namecoin,	Ethereum,	and	
potentially	even	Bitcoin	(through	technologies	such	as	Blockstore).	

4.1	The	Requirements	of	DPKI	Registration	

The	way	identifier	registration	is	handled	in	DPKI	is	different	from	DNS.	Although	
registrars	may	exist	in	DPKI,	they	must	adhere	to	several	requirements	born	out	of	
DPKI’s	goal	to	ensure	that	identities	belong	to	the	entities	they	represent:	

1. Private	keys	must	be	generated	in	a	decentralized	manner	that	ensures	they	
remain	under	the	principal’s	control	(e.g.,	via	open	source	client	software	on	
the	principal’s	device).	This	means	that	registration	services	generating	
keypairs	on	a	server	on	behalf	of	principals	are	explicitly	prohibited.	To	do	
otherwise	would	be	to	recreate	the	issues	mentioned	in	§1	"Introduction	—
	Why	DPKI".	

2. Software	must	ensure	that	principals	are	always	in	control	of	their	identifiers	
and	the	corresponding	keys.	Principals	can	extend	control	of	their	identifier	to	
third-parties	(e.g.,	for	recovery	purposes),	but	this	must	always	be	an	explicit,	
informed	decision	on	their	part,	and	never	a	default,	implicit,	or	misleading	
behavior	of	software.	Private	keys	must	never	be	stored	or	transmitted	in	an	
insecure	manner.	

DPKI v1.0.0, 12/23/15 Page 8 	

3. Software	must	ensure,	to	greatest	degree	possible,	that	no	mechanism	exists	
that	would	allow	a	single	entity	to	deprive	a	principal	of	their	identifier	without	
their	consent.	This	implies:	

i. Once	a	namespace	is	created	within	a	blockchain	(e.g.,	via	a	smart	
contract	on	Ethereum),	it	cannot	be	destroyed.	Likewise,	namespaces	
cannot	contain	blacklisting	mechanisms	that	would	allow	anyone	to	
invalidate	identifiers	that	do	not	belong	to	them.	

ii. The	rules	for	registering	and	renewing	identifiers	must	be	transparent,	
and	they	must	be	expressed	in	simple	terms	to	users	in	a	way	that	would	
be	difficult	to	overlook	or	misunderstand	(e.g.,	first-come-first-serve,	
auction).	In	particular,	if	registration	is	subject	to	an	expiration	policy,	
the	principal	must	be	explicitly	warned	that	this	could	result	in	the	
principal	losing	control	of	the	identifier.	

iii. Once	set,	namespace	rules	cannot	be	altered	to	introduce	any	new	
restrictions	for	renewing	or	updating	identifiers,	since	otherwise	it	
would	be	possible	to	take	control	of	identifiers	away	from	principals	
without	their	consent.	Likewise,	client	software	for	renewing	or	
updating	identifiers	cannot	be	modified	to	introduce	new	restrictions	
for	updating	or	renewing	an	identifier.	

iv. By	default,	software	for	managing	identifiers	must	ensure	that	all	
network	communications	for	creating,	updating,	renewing,	or	deleting	
identifiers	is	sent	via	a	decentralized,	peer-to-peer	mechanism.	This,	
again,	is	to	ensure	that	a	single	entity	(like	a	registrar)	cannot	prevent	
identifiers	from	being	updated	or	renewed.	

We	recommend	that	DPKI	infrastructure	also	strive	to	ensure	the	existence	of:	

• At	least	one	class	of	identifiers	that	do	not	expire	once	properly	registered.	

• At	least	one	class	of	neutral	registration	policies	available	to	all	members	of	the	
public,	as	well	as	to	any	service	provider	that	wishes	to	offer	registration	
services.	

DPKI	should	not	discriminate	against	any	party	that	wishes	to	use	it,	and	registries	
should	be	considered	a	commons;	their	design	and	operation	guided	by	principles	of	
openness,	neutrality,	and	inclusion	(NOTE:	Ostrom,	Elinor	(1990).	Governing	the	
Commons:	The	Evolution	of	Institutions	for	Collective	Action.	Cambridge,	UK:	
Cambridge	University	Press.	ISBN	9780521405997.	or	Allen,	Christopher	(2015).	A	
Revised	"Ostrom’s	Design	Principles	for	Collective	Governance	of	the	Commons"	
http://www.lifewithalacrity.com/2015/11/a-revised-ostroms-design-principles-
for-collective-governance-of-the-commons-.html).	

DPKI v1.0.0, 12/23/15 Page 9 	

4.2	The	Mechanics	of	DPKI	Registration	

Registered	identifiers	are	likely	to	have	two	types	of	keys	associated	with	them:	the	
keypair	that’s	used	for	registering	and	for	updating	the	data	associated	with	the	
identifier,	and	the	public	keys	associated	with	the	identifier	(subkeys).	

It	is	recommended	that	the	subkeys	be	used	by	the	principal	to	sign	messages.	They	
can	be	stored	directly	or	indirectly	in	the	datastore:	

• Direct	storage	means	that	the	public	key	itself	is	stored	directly	in	the	DPKI	
datastore.	For	most	blockchains,	this	is	unlikely	since	some	keys	are	quite	large	
and	most	blockchains	make	storing	them	impossible	or	very	expensive.	

• Indirect	storage	means	that	a	pointer	(e.g.	a	URI)	is	stored	alongside	with—or	
itself	containing—the	fingerprint	for	the	public	key.	

DPKI v1.0.0, 12/23/15 Page 10 	

5.	Security	of	Identifiers	And	Public	Keys	

Section	Contributors	Alphabetical	By	Last	Name:	Vitalik	Buterin,	Jude	Nelson,	and	Greg	
Slepak	

In	DPKI,	identifiers	are	typically	lookup	keys	that	map	to	values	that	can	only	be	
modified	by	the	entity	(or	entities)	with	the	corresponding	private	key(s).	In	such	a	
system,	the	worst	that	can	happen	is:	

• An	outdated	value	for	a	lookup	key	is	sent	in	response	to	a	lookup.	

• The	owner	of	the	identifier	is	not	able	to	update	its	value	due	to	censorship,	and	
they	lose	ownership	once	the	identifier	expires.	

These	problems	are	addressable	through	the	use	of	thin	clients	(discussed	later)	and	
censorship-circumvention	tools.	

It	is	also	possible,	although	extremely	unlikely,	that	a	false	value	is	sent	for	an	
identifier.	This	can	happen,	for	example,	if	a	blockchain	that	is	secured	by	proof-of-
work	has	an	adversary	capable	of	overpowering	the	honest	nodes	and	reversing	
history	beyond	the	point	of	registration.	However,	all	participants	of	the	system	
would	be	able	to	detect	this	attack	because	it	would	result	in	the	orphaning	of	an	
extremely	long	chain.	

This	sort	of	problem	is	most	likely	to	arise	from	a	centralization	of	a	blockchain,	
which	is	a	larger	security	concern.	

5.1	Protecting	Against	Centralization	

The	degree	of	decentralization	plays	a	role	in	the	security	of	a	system.	Centralized	
systems	are	vulnerable	to	manipulation,	censorship,	and	compromise.	They	
represent	a	single	point	of	failure	that	users	must	trust.	When	centralized	systems	
go	down,	they	take	all	their	users	with	them.	

While	blockchains	may	start	out	decentralized,	they	do	not	necessarily	end	up	that	
way.	This	implies	the	need	for	a	simple	metric	that	can	tell	us	whether	or	not	a	
"decentralized	datastore"	really	is	still	decentralized:	

How	many	doors	must	you	knock	on	to	compromise	the	users	of	a	system?	

We	can	roughly	define	a	metric	for	measuring	the	decentralization	of	most	
blockchains	by	counting	the	following	entities	(each	of	whom	act	a	single	point	of	
failure	for	the	entire	system	when	centralized):	

• "Devs"	—	The	number	of	parties	who	have	control	over	the	behavior	(source	
code)	of	the	blockchain.	

• "Nodes"	—	The	number	of	blockchain	replicas,	measured	by	the	number	of	full	
nodes.	

DPKI v1.0.0, 12/23/15 Page 11 	

• "Validators"	—	The	number	of	blockchain	miners/validator,	who	are	
responsible	for	creating	new	blocks	and	authorizing	transactions.	

Since	compromise	of	any	one	of	those	groups	leads	to	compromise	of	the	system,	we	
define	the	decentralization	of	a	blockchain	as:	

Decentralization(Blockchain)	=	MIN("Devs",	“Nodes”,	“Validators”)	

More	informally,	users	can	infer	the	decentralization	of	a	datastore	by	the	Quality	of	
Service	(QoS)	that	it	provides.	If,	for	example,	users	notice	that	they	are	suddenly	
unable	to	update	their	identifiers,	then	this	could	indicate	censorship	due	to	
centralization.	

5.1.1	A	Datastore	Agnostic	Protocol	To	Protect	Against	Centralization	

If	DPKI	were	to	specify	a	specific	blockchain	as	its	"de	facto	decentralized	
datastore",	it	would	put	centralization	pressures	on	that	blockchain.	Worse,	using	a	
de	facto	datastore	would	could	break	DPKI	if	the	blockchain	became	abandoned	due	
to	a	lack	of	interest	in	the	chain.	Software	developers,	having	coded	support	for	a	
specific	blockchain,	would	have	to	expend	significant	effort	to	rewrite	that	software	
to	migrate	to	a	different	blockchain.	Meanwhile,	there	could	be	serious	security	
concerns	or	QoS	issues.	

Therefore,	the	use	of	an	agnostic	protocol	for	accessing	decentralized	datastores	is	a	
fundamental	requirement	to	ensure	the	functioning	and	the	decentralization	of	the	
DPKI	as	a	whole.	Agnostic	protocols	make	it	easier	for	users	and	developers	to	
migrate	should	a	different	datastore	better	serves	their	needs.	The	mere	existence	of	
this	possibility	creates	a	market	of	decentralized	datastores	competing	to	meet	the	
needs	of	users.	

5.2	Securely	Accessing	Blockchain	Data	

Most	end	user	devices	will	not	run	full	nodes	because	of	the	resources	required,	so	
how	do	clients	access	the	chain	securely?	

One	solution	is	to	do	a	blockchain-version	of	Convergence,	wherein	a	set	of	
"blockchain	notaries"	tell	users	the	state	of	a	particular	object	maintained	by	a	
blockchain,	and	the	client	software	checks	for	unanimous	agreement	among	a	set	of	
trusted	notaries.	However,	this	route	arguably	compromises	what	the	key	purpose	
of	blockchain	technology:	removing	the	need	for	trusted	intermediaries.	

Fortunately,	there	is	another	technological	solution:	thin-client	protocols.	Thin	
clients	download	smaller	portions	of	the	blockchain,	sufficient	to	provide	security	
guarantees	stronger	than	those	provided	by	trusted	intermediaries,	but	small	
enough	to	be	used	by	any	modern	device.	A	detailed	example	of	how	one	possible	
thin-client	protocol	works	is	discussed	in	the	Appendix	"Thin	Client	Details".	

For	blockchains	lacking	thin	clients,	the	default	should	be	Convergence-like	
unanimous	consensus	based	on	a	random	sampling	of	trusted	nodes.	These	nodes	

DPKI v1.0.0, 12/23/15 Page 12 	

should	all	see	the	same	chain,	so	if	even	one	of	them	disagrees,	it	is	an	indication	
that	something	is	amiss	and	the	event	should	be	reported.	

In	general,	this	suggests	a	modular	design,	where	devices	are	able	to	talk	to	any	
blockchain	and	use	the	most	secure	technique(s)	available	for	that	chain.	It’s	
possible	that	no	single	technique	provides	the	greatest	security,	and	in	that	situation	
the	minimum	number	of	techniques	are	combined	to	provide	the	highest	level	of	
security	that	the	device	can	reasonably	sustain.	

5.3	Protecting	Against	Censorship	

Finally,	the	security	of	DPKI	must	address	censorship:	whether	the	datastores	are	
accessible	to	end	users.	A	blockchain	isn’t	useful	if	an	ISP	is	censoring	it.	

Censorship	circumvention	technologies	such	as	mesh	networking,	proxies,	and	
onion	routing,	can	be	used	to	bypass	censorship	of	a	blockchain	network.	

A	separate	but	related	concern	is	censorship	of	the	data	that’s	referenced	by	a	
blockchain,	such	as	when	a	hash	is	stored	in	the	value	for	an	identifier,	and	the	data	
represented	by	that	hash	is	stored	elsewhere.	In	this	situation,	the	same	techniques	
(e.g.,	onion	routing,	proxies)	can	be	used	in	addition	to	looking	up	the	hash	over	
various	different	storage	mechanisms	[ref:	see	IPFS,	Blockstore].	

DPKI v1.0.0, 12/23/15 Page 13 	

6.	Recovering	Lost	Identifiers	-	Private	Key	Management	

Section	Contributors	Alphabetical	By	Last	Name:	Vitalik	Buterin,	Christian	Lundkvist,	
Pavel	Kravchenko,	Jude	Nelson,	Duke	Dorje,	Arthur	Brock,	Greg	Slepak,	Noah	Thorp,	
and	Harlan	T	Wood	

Strong,	reliable	ownership	of	identifiers	can	make	those	identifiers	highly	valuable.	
Identifiers	could	be	used	to	authenticate	a	user	to	the	door	of	their	house,	their	car,	
etc.	These	identifiers	begin	to	represent	the	"keys	to	one’s	kingdom".	It	would	be	
catastrophic	if	these	identifiers	were	lost	or	compromised.	Addressing	that	problem	
is	therefore	of	paramount	importance	to	DPKI’s	success.	

6.1	Two	Forms	of	Loss	

Because	of	its	importance,	use	of	the	master	key	must	be	minimized	by	any	identity	
system	that’s	built	on	top	of	DPKI.	Indeed,	this	is	the	approach	already	taken	by	
identity	systems	like	Blockchain	ID.	Instead	of	using	the	master	key	to	sign	
messages,	subkeys	are	created	for	each	new	service	that	the	identifier	is	used	with.	

This	means	there	are	two	types	of	keys	that	can	be	lost	or	compromised:	

• The	master	private	key,	which	controls	the	data	that’s	associated	with	the	
identifier.	Losing	this	key	can	mean	loss	of	control	of	your	online	identity.	

• The	subkeys,	which	are	linked	to	the	identifier	and	are	stored	as	part	of	the	
identifier’s	data.	

The	security	and	recovery	properties	for	the	master	key	and	subkeys	are	slightly	
different.	The	following	are	overviews	of	both	possibilities;	a	full	treatment	of	this	
topic	is	beyond	the	scope	of	this	paper	and	is	left	for	future	work.	

6.2	Recovery	of	the	Master	Key	

He	who	controls	the	master	key	to	an	identifier	is	the	identifier’s	master.	

There	are	various	mechanisms	that	can	be	used	to	recover	a	master	key	in	a	
decentralized	system.	

6.2.1	Recombining	Shards	of	the	Master	Key	

Principals	can	protect	themselves	against	master	key	loss	by	distributing	shards	of	
the	master	key	to	trusted	entities.	Shamir	Secret	Sharing	and	Threshold	Signatures	
are	two	techniques	that	can	be	used	to	generate	and	recombine	these	shards.	

In	the	event	of	loss,	the	principal	would	ask	for	N	shards	of	the	master	key	from	M	
entities.	N	is	the	number	of	distinct	shards	required	for	recovery.	Upon	receiving	the	
N	shards,	the	master	key	would	be	successfully	recovered.	

DPKI v1.0.0, 12/23/15 Page 14 	

This	technique	does	little	to	protect	principals	in	the	event	of	master	key	
compromise,	however.	

6.2.2	Protecting	Against	Compromise	

The	danger	of	compromise	comes	about	from	a	single	entity	having	the	master	key	
in	their	possession	any	point	in	time.	We	can	address	this	issue	by	ensuring	that	no	
single	entity	possess	the	master	key	at	any	single	point	in	time.	

For	example,	we	can	envision	a	system	where,	upon	registration,	users	select	five	
entities	that	they	trust	to	guard	their	identity.	These	entities	could	be	represented	
by	trusted	persons,	organizations,	or	even	devices.	Though	they	act	like	authorities,	
they	are	never	forced	upon	anyone	and	are	always	chosen	by	the	principal	
themselves.	

A	master	key	is	then	generated	ephemerally,	broken	into	shards,	sent	to	these	
entities,	and	immediately	destroyed.	Threshold	signature	schemes	can	be	used	in	
place	of	Shamir	Secret	Sharing	so	that	a	master	key	never	needs	to	be	recombined	in	
its	entirety	on	any	given	device.	

6.2.3	Using	Smart	Contracts	

Some	blockchains,	such	as	Ethereum,	support	arbitrary	computation.	In	such	cases,	
principals	can	construct	recovery	mechanisms	proportional	to	their	level	of	paranoia.	

As	a	trivial	example,	a	company	like	Google	could	secure	their	control	over	a	
blockchain-domain	by	using	a	namespace	where	a	smart	contract	is	used	to	update	
its	value.	The	smart	contract	can	be	coded	to	function	only	when	it	receives	a	
message	signed	by	6	out	of	10	entities,	or	follow	any	other	arbitrary	logic.	

DPKI v1.0.0, 12/23/15 Page 15 	

6.3	Recovery	And/Or	Revocation	of	Subkeys	

Subkey	compromise	or	loss	is	less	of	a	concern	than	loss	or	compromise	of	a	master	
key,	because	verification	is	typically	done	using	the	current	set	of	subkeys	for	an	
identifier.	If	a	subkey	is	lost	or	compromised,	the	master	key	can	simply	be	used	to	
securely	generate	and	replace	the	old	subkey(s)	in	a	blockchain.	However,	
depending	on	how	they	are	used,	old	subkeys	might	still	require	recovery	or	
revocation.	

As	mentioned	previously,	the	importance	of	the	master	key	implies	that	identifiers	
will	be	authenticated	through	messages	signed	by	the	subkeys	of	an	identifier,	and	
not	messages	signed	by	the	master	key.	However,	since	those	messages	are	typically	
associated	with	the	identifier	itself,	they	are	in	effect	being	signed	by	the	master	key	
(since	the	master	key	is	directly	tied	to	the	identifier).	Therefore,	the	master	key	can	
still	be	used	to	sign	and	disseminate	messages	revoking	one	or	more	historical	
subkeys.	

Recovery	of	lost	subkeys	can	be	done	using	the	sharding	mechanisms	described	
previously.	Alternatively,	as	with	the	group-based	recovery	schemes	described	
above,	a	principal	can	choose	to	designate	authority	over	their	identifier	to	a	group.	
This	group	could	have	the	ability	to	sign	new	subkeys	as	belonging	to	the	identifier,	
as	well	as	the	ability	to	sign	messages	that	indicate	an	old	key	was	compromised	and	
therefore	revoked.	

DPKI v1.0.0, 12/23/15 Page 16 	

7.	Conclusion	

In	this	paper,	we	discussed	how	identity	is	managed	online	today	through	globally-
readable	identifiers	like	website	domains.	We	identified	various	security	and	
usability	problems	in	the	Internet’s	two	primary	identity	management	systems:	DNS	
and	X.509	PKIX.	We	pinpointed	the	source	of	these	problems	to	be	the	centralized	
nature	of	these	systems,	which	prevents	the	entities	represented	by	these	identifiers	
from	truly	controlling	them,	making	it	possible	for	third-parties	to	compromise	their	
security.	

We	then	showed	how	the	security	and	usability	problems	of	DNS	and	PKIX	can	be	
addressed	through	the	use	of	decentralized	key-value	datastores,	such	as	
blockchains,	to	create	a	specification	for	a	Decentralized	Public	Key	Infrastructure	
(DPKI).	In	describing	the	properties	of	DPKI,	we	showed	that	DPKI	works	even	on	
resource-constrained	mobile	devices,	and	that	it	is	able	to	preserve	the	integrity	of	
identifiers	by	protecting	organizations	from	private	key	loss	or	compromise.	

Our	future	work	is	to	develop	a	full	specification	for	DPKI	through	an	Internet	
standards	body	like	the	IETF.	

8.	References	

Government	Innovation	in	eID	+	Citizen	Engagement	BC	Identity	Citizen	
Consultation	Results	

Namecoin’s	UNO	Commitments	by	Daniel	Kraft	

• https://forum.namecoin.info/viewtopic.php?f=5&t=2239	

Namecoin’s	Analysis	of	various	Thin	Client	Models	

• https://github.com/hlandau/ncdocs/blob/master/stateofnamecoin.md#spvut
xo-cbc	

• https://github.com/hlandau/ncdocs/blob/master/stateofnamecoin.md#spvut
xo-cbcuno-nx-cbc	

Ethereum	Related	Documents	On	Thin	Client	Relevant	Material	

• https://easythereentropy.wordpress.com/2014/06/04/understanding-the-
ethereum-trie/	

• https://github.com/ethereum/wiki/wiki/Patricia-Tree	

DPKI v1.0.0, 12/23/15 Page 17 	

Appendix:	Thin	Client	Details	

Section	Contributors	Alphabetical	By	Last	Name:	Vitalik	Buterin,	Greg	Slepak	

Types	of	Information	

What	kind	of	information	do	thin	clients	want	to	know?	

The	following	are	some	examples:	

• Determining	the	time	that	a	particular	record	was	created	or	first	seen	

• Finding	the	public	key	currently	associated	with	an	account	ID	

• Finding	the	IP	address	and	other	data	currently	associated	with	a	domain	name	

• Learning	about	key	revocations	(with	no	specified	process	for	finding	a	
replacement	key)	

• Determining	the	most	recent	version	that	a	developer	has	published	for	a	
particular	software	package	

More	generally,	we	can	decompose	this	into	three	categories	of	problems:	

• Proving	existence:	proving	that	an	event	of	a	particular	kind	happened	at	time	
T	

• Proving	inexistence:	proving	that	an	event	of	a	particular	kind	did	not	happen	
between	times	T_1	and	T_2	

• Proving	state:	proving	that	the	"state"	of	an	application,	which	can	potentially	
be	a	result	of	complex	“state	transition”	rules	from	applying	many	transactions,	
is	equal	to	X	at	time	T	

These	are	roughly	arranged	in	increasing	order	of	hardness;	proving	existence	is	the	
easiest,	and	proving	state	is	the	hardest.	

Degrees	of	Security	

In	general,	a	thin-client	protocol	on	top	of	a	blockchain	can	offer	three	levels	of	
security:	

• Maximum	security:	if	a	thin	client	makes	a	query,	and	any	node	responds	with	
a	valid	reply	to	that	query,	then	(provided	we	can	detect	block	withholding	
attacks)	the	thin	client	can	immediately	either	learn	(i)	the	correct	answer	to	
the	query,	or	(ii)	that	the	response	was	invalid	and	should	be	ignored.	

• 1-of-N	trust	security:	if	a	thin	client	makes	a	query,	and	it	is	accepted	as	a	
security	assumption	that	at	least	one	honest	node	will	respond	correctly	within	

DPKI v1.0.0, 12/23/15 Page 18 	

T	seconds,	then	the	thin	client	can	learn	the	correct	answer	after	T	seconds,	
regardless	of	how	many	offline/faulty/byzantine	nodes	there	are.	

• N/2-of-N	trust	security:	if	a	thin	client	makes	a	query,	it	must	select	some	set	
of	nodes	(say	100)	that	it	trusts	to	respond,	and	then	randomly	sample	3	or	so	
nodes	out	of	that	list	and	require	a	unanimous	agreement	for	the	response.	It	
will	learn	the	correct	answer	as	long	as	all	3	nodes	do	not	collude.	If	any	node	is	
offline,	it	can	continue	to	randomly	search	for	an	online	node,	until	it’s	checked	
some	upper	threshold	of	nodes,	and	hard-fail	with	an	error	once	it	reaches	that	
threshold.	

As	an	example	of	how	these	models	apply,	consider	the	simple	case	of	"finding	the	
current	public	key	associated	with	an	account",	assuming	that	there	exists	a	single	
master	key	(or	set	of	master	keys)	that	has	the	right	to	revoke	and	replace	keys.	
Suppose	that	we	have	a	blockchain	where	only	transactions	are	placed	in	Merkle	
trees.	Then,	a	thin	client	sends	a	request	asking	the	network	for	a	Merkle	proof	of	
the	most	recent	transaction	that	replaced	the	public	key.	If	the	client	receives	an	
answer,	it	knows:	

• With	the	maximum	security	assurance	that	this	was	the	valid	key	at	some	
point	in	the	past.	This	is	a	"proof	of	existence"	problem.	

• With	1-of-N	trust	security	assurance	that	this	is	still	the	valid	key.	
(Theoretically,	a	newer	replacement	transaction	could	exist,	but	a	100%	
collusion	or	censorship	could	lead	to	the	client	never	learning	about	it.)	This	a	
"proof	of	inexistence"	problem.	

For	protocols	that	have	more	complex	needs	(eg.	implementing	complex	name	
registrar	rules),	we	are	forced	to	deal	with	the	more	generalized	problem	of	
"proving	state".	If	we	use	a	simple	blockchain	that	only	keeps	track	of	transactions,	
clients	would	only	know	the	answer	with	N/2-of-N	trust	security	assurance.	
However,	if	we	have	a	blockchain	where	the	state	is	in	a	Merkle	tree,	then	the	client	
can	learn	absolutely	any	fact	with	maximum	security	assurance.	

Because	different	blockchains	have	different	levels	of	usage	of	Merkle	proofs,	our	
proposed	solution	is	to	develop	an	abstract	protocol	by	which	different	blockchains	
can	be	used	(as	no	single	blockchain	is	100%	guaranteed	not	to	be	fatally	flawed,	we	
want	an	abstract	model	similar	to	that	used	for	encryption	algorithm	choices),	and	
which	automatically	attempts	to	provide	the	best	level	of	security	available	
depending	on	the	blockchain’s	capabilities.	Notaries	would	be	available	as	a	
backstop,	but	blockchain	plugins	would	exist	which	the	client	could	install	to	
support	specific	blockchains.	These	plugins	would	intelligently	make	blockchain	
queries	that	would	provide	as	much	security	as	possible,	based	on	whether	the	
blockchain	supports	strong	security	assurances	for	the	specific	kind	of	problem	
(proof	of	existence,	proving	state,	etc)	in	question.	

DPKI v1.0.0, 12/23/15 Page 19 	

Thin	Client	Protocols	

Thin-client	protocols	typically	work	in	two	stages.	

First,	the	thin	client	downloads	only	a	portion	of	the	chain,	typically	the	header	
chain.	The	header	chain	typically	contains	a	very	small	amount	of	information	
(typically	80-600	bytes)	for	each	block	containing	metadata,	such	as	(i)	proof	of	
work	nonces;	(ii)	the	root	of	a	cryptographic	hash	tree,	such	as	a	Merkle	tree,	
containing	data	such	as	transactions;	and	(iii)	possibly	the	state	of	the	application	
that	the	blockchain	keeps	track	of.	

Second,	the	client	validates	the	header	chain	by	using	the	blockchain’s	underlying	
consensus	algorithm	(e.g.	checking	proof	of	work	or	proof	of	stake	signatures).	
Afterward,	the	client	treats	the	header	chain	as	"trusted".	It	applies	cryptographic	
techniques	that	use	the	data	in	the	header	chain	as	a	“root	hash”,	from	which	it	can	
verify	claims	about	the	rest	of	the	data	stored	in	the	blockchain.	

Fetching	the	Header	Chain	

The	first	task	for	a	thin	client	is	to	download	and	verify	the	header	chain.	Assuming	
a	working	network	connection,	this	is	easy.	For	example,	in	the	proof-of-work	case	
the	client	asks	the	network	for	as	many	block	headers	as	it	can	provide,	the	network	
replies	back,	and	the	client	checks	to	make	sure	that	each	header	has	valid	proof	of	
work	and	then	determines	the	"longest"	chain	of	valid	block	headers	(where	
“longest”	is	taken	to	mean	“represents	the	most	cumulative	work”).	More	advanced	
protocols	using	skiplists	exist	so	that	clients	do	not	even	need	to	download	every	
block	header,	though	in-depth	discussion	of	this	is	beyond	the	scope	of	this	paper.	

The	main	challenge	with	this	mechanism	is	simple:	what	if	the	network	connection	
is	compromised?	Potentially,	an	internet	service	provider	could	attack	a	user	by	
censoring	replies	that	tell	a	client	about	the	official	chain,	and	instead	tell	the	user	
about	their	own	fork.	With	proof-of-work	protocols,	one	can	statistically	detect	this	
by	noticing	a	reduction	in	the	rate	of	block	production;	however,	more	research	is	
needed	on	determining	the	
best	and	most	reliable	way	to	
do	this.	

Verifying	with	Merkle	Trees	

After	a	thin	client	has	
successfully	received	a	small	
piece	of	data	that	is	"trusted"	it	
must	be	able	to	verify	claims	
about	the	rest	of	the	data	in	the	
chain.	This	relies	on	Merkle	
trees.	A	Merkle	tree	is	a	
hashing	algorithm	where	a	
large	number	of	“chunks”	of	data	are	hashed	a	few	pieces	at	a	time,	and	then	the	

DPKI v1.0.0, 12/23/15 Page 20 	

resulting	hashes	are	themselves	put	into	small	groups	and	hashed	and	so	on	
recursively	until	the	process	results	in	one	single	hash,	called	the	root.	A	simple	
depiction	of	this	is	shown	to	the	right.	

The	benefit	of	this	method	is	
that	the	membership	of	any	
single	chunk	of	data	in	the	tree	
can	be	proven	via	a	Merkle	
branch,	which	is	the	subset	of	
nodes	in	the	tree	whose	values	
are	used	in	the	process	of	
computing	the	root	hash.	

With	just	this	set	of	nodes,	a	
thin	client	can	verify	that	a	
particular	chunk	is	in	the	tree	
has	a	particular	proof.	The	
scheme	is	secure	up	to	collision	resistance;	in	order	for	an	attacker	to	cheat	the	
scheme,	the	attacker	would	need	to	break	the	underlying	hash	function.	There	are	
many	different	kinds	of	Merkle	trees,	including	simple	binary	trees	and	more	
advanced	designs	such	as	Merkle	Patricia	trees	that	allow	for	efficient	insert	and	
delete	operations,	but	the	basic	principle	is	the	same.	

	

DPKI v1.0.0, 12/23/15 Page 21 	

	

Additional	Credits	

Lead	Paper	Editors:	Greg	Slepak,	Drummond	Reed	

About	Rebooting	the	Web	of	Trust	

This	paper	was	produced	as	part	of	the	Rebooting	the	Web	of	Trust	design	workshop.	
On	November	3rd	and	4th	2015,	over	40	tech	visionaries	came	together	in	San	
Francisco,	California	to	talk	about	the	future	of	decentralized	trust	on	the	internet	with	
the	goal	of	writing	3-5	white	papers	and	specs.	This	is	one	of	them.	

Workshop	Sponsors:	Respect	Network,	PricewaterhouseCoopers,	Open	Identity	
Exchange,	and	Alacrity	Software	

Workshop	Producer:	Christopher	Allen	

Workshop	Facilitators:	Christopher	Allen	and	Brian	Weller	with	graphic	facilitation	
by	Sonia	Sawhney	and	additional	paper	editorial	&	layout	by	Shannon	Appelcline	

What’s	Next?	

The	design	workshop	and	this	paper	are	just	starting	points	for	Rebooting	the	Web	of	
Trust.	If	you	have	any	comments,	thoughts,	or	expansions	on	this	paper,	please	post	
them	to	our	GitHub	issues	page:	http://bit.ly/weboftrust-issues.		We	are	also	planning	
for	more	gatherings	on	this	topic	in	the	near	future,	with	the	object	being	to	have	
something	notable	ready	for	release	on	the	25th	anniversary	of	PGP,	in	July	2016.	If	
you’d	like	to	be	involved	or	would	like	to	help	sponsor	these	events,	email:		

ChristopherA@LifeWithAlacrity.com	

